THEORETICAL PROBLEMS

المسائل النظرية

<table>
<thead>
<tr>
<th>Country:</th>
<th>SYRIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name as in passport:</td>
<td>BAKRI ROUMI JAMAL</td>
</tr>
<tr>
<td>Student code:</td>
<td>SYR-3</td>
</tr>
<tr>
<td>Language:</td>
<td>Arabic</td>
</tr>
</tbody>
</table>

50th IChO 2018
International Chemistry Olympiad
SLOVAKIA & CZECH REPUBLIC

BACK TO WHERE IT ALL BEGAN

العودة من حيث بدأنا
<table>
<thead>
<tr>
<th>Problem</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DNA</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Repatriation of remains in the middle ages</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Emerging electro-mobility</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Column chromatography of radioactive copper</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Bohemian granet</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>Let's go mushrooming</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>Cidofovir</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>Caryopyllene</td>
<td>57</td>
</tr>
</tbody>
</table>

Physical constants and equations

Table of Contents

قائمة المحتويات

<table>
<thead>
<tr>
<th>باللغة العربية</th>
</tr>
</thead>
<tbody>
<tr>
<td>المسألة الثانية: نقل الزفاف في العصور الوسطى</td>
</tr>
<tr>
<td>المسألة الثالثة: الانتقالية الكهربائية المستجدة</td>
</tr>
<tr>
<td>المسألة الرابعة: الفصل بعمود الكروماتوغرافيا للنحاس المشع</td>
</tr>
<tr>
<td>المسألة الرابعة: التعمق بالفطور</td>
</tr>
</tbody>
</table>

الاختبار النظري، النسخة العربية السورية الرسمية
التعليمات

- يحتوي كتيب أسئلة الامتحان النظري 65 صفحة.
- يمكنك أن تبدأ الكتابة عندما يتم إعطاء الإشارة بالبداية.
- لديك 5 ساعات لإنهاء الاختبار.
- يجب كتابة جميع النتائج والأجوبة بوضوح بالقلم الأزرق في المكان المحدد بها في دفتر الامتحان. لن يتم الأخذ بعين الاعتبار الإجابات المكتوبة خارج مربعات الإجابات وستهمل درجاتها.
- لقد تم تزويكك بـ 3 أوراق من أوراق المسودة، إذا كنت بحاجة إلى المزيد؛ استخدام الوجه الخلفي لأوراق الاختبار وذكر أن أوراق المسودة لن تُصحح.
- الجدول الدوري والطيف المرئي ليسا جزءاً من كتيب الأسئلة.
- استخدم فقط القلم والألوان الحاسية المعطاة.
- النسخة الإلكترونية الرسمية من كتيب الامتحان متاحة عند الطلب ويمكنك طلبها بها للتوضيح فقط.
- إذا كنت بحاجة إلى مغادرة غرفة الامتحان (إلى الحمام أو لتناول وجبة خفيفة)، لوح (ارفع) بطاقة IChO الزرقاء وسيأتي المراقب لمرافقتك.
- سيقوم المشرف قبل انتهاء الاختبار بـ 30 دقيقة بالتنبيه عن قرب انتهاء الامتحان.
- توقف عن الكتابة فور إعطاء إشارة التوقف STOP، وعدم التوقف عن الكتابة لأكثر من نصف دقيقة بعد ذلك سيؤدي إلى إلغاء الامتحان النظري الخاص بك.
- بعد إعطاء أمر التوقف، ضع دفتر الامتحان مرة أخرى في محفظة الامتحان واتคอย في مقعده. سيأتي المشرف على الامتحان لجمع الملفات.
Physical constants and equations

Avogadro’s constant: \(N_A = 6.022 \times 10^{23} \text{ mol}^{-1} \)
Universal gas constant: \(R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \)
Speed of light: \(c = 2.998 \times 10^8 \text{ m s}^{-1} \)
Planck’s constant: \(h = 6.626 \times 10^{-34} \text{ J s} \)
Faraday constant: \(F = 9.6485 \times 10^4 \text{ C mol}^{-1} \)
Standard pressure: \(p = 1 \text{ bar} = 10^5 \text{ Pa} \)
Normal (atmospheric) pressure: \(p_{\text{atm}} = 1.01325 \times 10^5 \text{ Pa} \)
Zero of the Celsius scale: \(273.15 \text{ K} \)
Mass of electron: \(m_e = 9.109 \times 10^{-31} \text{ kg} \)
Unified atomic mass unit: \(u = 1.6605 \times 10^{-27} \text{ kg} \)
Ångström: \(1 \text{ Å} = 10^{-10} \text{ m} \)
Electronvolt: \(1 \text{ eV} = 1.602 \times 10^{-19} \text{ J} \)
Watt: \(1 \text{ W} = 1 \text{ J s}^{-1} \)

Ideal gas equation: \(pV = nRT \)
The first law of thermodynamics: \(\Delta U = q + W \)
Power input for electrical device: \(P = UI \)
where \(U \) is voltage and \(I \) electric current
Enthalpy: \(H = U + pV \)
Gibbs free energy: \(G = H - TS \)
\(\Delta G^o = -RT \ln K = -zF E_{\text{cell}} \)
\(\Delta G = \Delta G^o + RT \ln Q \)

Reaction quotient \(Q \)
for a reaction \(a A + b B \rightleftharpoons c C + d D \):
\(Q = \frac{[C]^c[D]^d}{[A]^a[B]^b} \)

Entropy change:
\(\Delta S = \frac{q_{\text{rev}}}{T} \)
where \(q_{\text{rev}} \) is heat for the reversible process

Heat change
for temperature-independent \(c_m \):
\(\Delta q = n c_m \Delta T \)
where \(c_m \) is molar heat capacity
Van 't Hoff equation:
\[
\frac{d \ln K}{dT} = \frac{\Delta H_m}{RT^2} \Rightarrow \ln \left(\frac{K_2}{K_1} \right) = \frac{\Delta H_m}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)
\]

Henderson–Hasselbalch equation:
\[
pH = pK_a + \log \frac{[A^-]}{[HA]}
\]

Nernst–Peterson equation:
\[
E = E^o - \frac{RT}{2F} \ln Q
\]

Energy of a photon:
\[
E = \frac{hc}{\lambda}
\]

Relation between \(E \) in eV and in J:
\[
\frac{E}{eV} = \frac{E}{J} \quad \frac{q_e}{C}
\]

Lambert–Beer law:
\[
A = \log \frac{I_0}{I} = \varepsilon c
\]

Wavenumber:
\[
\tilde{\nu} = \frac{v}{c} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}
\]

Reduced mass \(\mu \) for a molecule AX:
\[
\mu = \frac{m_A m_X}{m_A + m_X}
\]

Energy of harmonic oscillator:
\[
E_n = \hbar \nu (n + \frac{1}{2})
\]

Arrhenius equation:
\[
k = A e^{-\frac{E_a}{RT}}
\]

Rate laws in integrated form:

Zero order:
\[
[A] = [A]_0 - kt
\]

First order:
\[
\ln[A] = \ln[A]_0 - kt
\]

Second order:
\[
\frac{1}{[A]} = \frac{1}{[A]_0} + kt
\]
Problem 1. DNA

Palindromic sequences are an interesting class of DNA. In a palindromic double-stranded DNA (dsDNA) species, the sequence of one strand read in the 5′→3′ direction matches the 5′→3′ reading on the complementary strand. Hence, a palindromic dsDNA consists of two identical strands that are complementary to each other. An example is the so-called Drew–Dickerson dodecanucleotide (1):

$$5'\text{-CGCGAATTGC}GCG-3'$$

$$3'\text{-GCGCTTAAGCGC}5'$$

1.1 How many different palindromic double-stranded DNA dodecanucleotides (i.e., dsDNA species with twelve base pairs) exist?

1.2 How many different palindromic double-stranded DNA undecanucleotides (i.e., dsDNA species with eleven base pairs) exist?
The melting temperature of dsDNA, \(T_m \), is defined as the temperature at which 50% of the original amount of DNA double strands are dissociated into separate strands.

1.3 Consider the Drew–Dickerson dodecanucleotide (1). Assume that a G–C nucleobase pair contributes to the DNA duplex stability more than an A–T pair does. What is the probability that its \(T_m \) increases when a single randomly selected base pair is replaced by a G–C pair?

Let us analyze the thermodynamics of formation of double-helical DNA from single strands, and its dependence on the length of the DNA and on the temperature. The equilibrium constant of association of single strands to form dsDNA differs for palindromic and non-palindromic dsDNA. A solution of dsDNA with the initial concentration of \(c_{init} = 1.00 \times 10^{-6} \) mol dm\(^{-3}\) was heated to \(T_m \) and equilibrium was reached.

1.4 Calculate the equilibrium constant of association of single strands at \(T_m \) for both non-palindromic and palindromic DNA.

Lastly, if this problem; you need to solve a problem of the DNA double helix.

\[T_{m} = \text{the melting temperature} \]

\[T_{m} = \text{the melting point} \]

\[T_{m} = \text{the melting temperature} \]

\[T_{m} = \text{the melting point} \]

\[T_{m} = \text{the melting temperature} \]

\[T_{m} = \text{the melting point} \]
Non-palindromic dsDNA
Calculation:

\[K = \]

Palindromic dsDNA
Calculation:

\[K = \]

The mean contributions to the Gibbs energy of association of two single strands to form dsDNA were estimate over a certain range of experimental conditions, and they amount to \(-6.07\) kJ mol\(^{-1}\) per one G–C pair, and \(-1.30\) kJ mol\(^{-1}\) per one A–T pair present in a dsDNA.

1.5 How many base pairs are there in the shortest dsDNA oligonucleotide that has \(T_m\) above 330 K? At this \(T_m\), consider the following values of the equilibrium constant of association of single strands to form a dsDNA: \(K_{np} = 1.00 \times 10^6\) for a non-palindromic dsDNA, \(K_p = 1.00 \times 10^5\) for a palindromic dsDNA. Is the shortest oligonucleotide palindromic or non-palindromic?
قيّمت طاقة جيبس لعملية ارتباط سلسلتين مفردتين من الدنا لتشكيل دنا ثنائي الطاق عند شروط تجريبية مختلفة; ووجد أنّها تساوي $6.07 \text{ kJ}\cdot\text{mol}^{-1}$ لكل زوج أو لзвوج الواحد من $\text{G}\text{--C}$؛ وتساوي $1.30 \text{ kJ}\cdot\text{mol}^{-1}$ للفراملن من $\text{A}\text{--T}$ الدنا ثنائي الطاق.

ما هو أقصر طول مّمكّن لجري دنا ثنائي الطاق له قيمة T_m فوق 330 K؟ أي من كم نيكليوتيد يتكون هذا الجزيء؟

الاستعمال القيم التالية لثابت توازن عملية ارتباط السلاسل المفردة لتشكيل دنا ثنائي الطاق بالنسبة للدنا ثنائي الطاق غير البلاندرومي $K_{p} = 10^{-1} \times 10^{-6} = 1.00$ وللدنا البلاندرومي $K_{np} = 10^{-6}$. يجب أن تُظهر حساباتك.

Calculation of the number of base pairs:

The needed length of a non-palindromic dsDNA:

عدد النيكليوتيدات اللازمة في الدنا ثنائي الطاق غير البلاندرومي

The needed length of a palindromic dsDNA:

عدد النيكليوتيدات اللازمة في الدنا ثنائي الطاق البلاندرومي

The shortest oligonucleotide is

إذاً بالنسبة للتسلسلين الذين حسبت طولهما، التسلسل الأقصر هو

- □ palindromic (P)
- □ non-palindromic (NP)
Finally, let us leave the simplified idea of base pairs contributing individually to the association of DNA strands. The Gibbs energy of this process may be considered explicitly dependent on temperature. The dependence of the inverse T_m of the Drew–Dickerson dodecanucleotide (1) on the logarithm of the initial duplex concentration c_{init} is shown below. (Note: a standard concentration $c_0 = 1 \text{ mol dm}^{-3}$ is introduced.)

لا يعتمد تشافع سلاسل الدنا على أزواج الأسس الأزوتية فقط؛ حيث تعتمد طاقة جيبس لهذه العملية (عملية التشافع) بشكل كبير على درجة الحرارة، ويتضح المخطط التالي العلاقة بين مقلوب درجة الانصهار (T_m) لتسلسل "درو-دكرسون" (ذي الـ12 نيكيوتيدي) (الشكل 1) واللوغاريتم النيبري للتركيز الابتدائي للدنا ثنائي الطاق (c_{init}).

(فرضنا عليه للتخلص من الواحدات لا أكثر).

<table>
<thead>
<tr>
<th>c_{init} / 10^{-6} mol dm$^{-3}$</th>
<th>0.25</th>
<th>0.50</th>
<th>1.00</th>
<th>2.0</th>
<th>4.0</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_m / K</td>
<td>319.0</td>
<td>320.4</td>
<td>321.8</td>
<td>323.3</td>
<td>324.7</td>
<td>326.2</td>
</tr>
</tbody>
</table>
1.6 Calculate the standard enthalpy ΔH° and the standard entropy ΔS° of the association of DNA single strands to form the palindromic double-stranded Drew–Dickerson dodecanucleotide (1). Assume that ΔH° and ΔS° do not vary with temperature.

احسب الانتالبيا القياسية ΔH° والانتربيا القياسية ΔS° لعملية ارتباط سلاسل الدنا المفردة لتشكيل بنية 'درو-دكرسون' ثنائية الطاق، وذلك على فرض أن ΔH° و ΔS° لا تتغير قيمتهما مع درجة الحرارة.

Calculation:

$\Delta H^\circ = $

$\Delta S^\circ = $
Problem 2. Repatriation of remains in the middle ages

At ambient temperatures, racemization is a slow reaction. As such, it can be used for dating biological objects and, moreover, for studying their thermal history. Let us take L-isoleucine (L-Ile) ((2S,3S)-2-amino-3-methylpentanoic acid) as an example. It isomerizes on the α-carbon and forms (2R,3S)-2-amino-3-methylpentanoic acid, also known as D-allo-isoleucine. As the configuration changes on only one of the two stereogenic centres, this process is called epimerization rather than racemization.

2.1 Choose all true statements.

☐ D-allo-isoleucine and L-isoleucine have the same values of specific optical rotation but they have different melting points.

☐ D-allo-isoleucine has an identical absolute value of specific optical rotation as L-isoleucine but the sign is opposite. The melting point is the same for both isomers.

☐ D-allo-isoleucine and L-isoleucine have different values of specific optical rotation and different melting points.

☐ D-allo-isoleucine is not optically active.
2.2 Assign the absolute configurations for each stereoisomer of isoleucine.

\begin{align*}
\text{A} & \quad 2S,3R \quad (\text{L-\textit{allo}-isoleucine}) \\
\text{B} & \quad 2R,3S \quad (\text{D-\textit{allo}-isoleucine}) \\
\text{C} & \quad 2S,3S \quad (\text{L-isoleucine}) \\
\text{D} & \quad 2R,3R \quad (\text{D-isoleucine})
\end{align*}

2.3 The equilibrium constant K_{ep} for L-isoleucine epimerization has the value of 1.38 (at 374 K).

If we set molar Gibbs free energy of L-isoleucine $G_m^\circ = 0 \text{ kJ mol}^{-1}$, determine the Gibbs free energies for all structures A–D from question 2.2 at 374 K.

\begin{align*}
\text{A} & \quad \text{kJ mol}^{-1} \\
\text{B} & \quad \text{kJ mol}^{-1} \\
\text{C} & \quad \text{kJ mol}^{-1} \\
\text{D} & \quad \text{kJ mol}^{-1}
\end{align*}

2.4 If we take into account stereoisomerism at all stereocentres, what is the maximum possible number of the stereoisomers of the tripeptide Ile-Ile-Ile?
At the start of the epimerization, we can neglect the reverse reaction. The epimerization then follows the first-order kinetics:

\[\text{L-isoleucine} \xrightarrow{k_1} \text{D-allo-isoleucine} \]

The value of the rate constant at 374 K is \(k_1(374 \text{ K}) = 9.02 \times 10^{-5} \text{ h}^{-1} \) and at 421 K it is \(k_1(421 \text{ K}) = 1.18 \times 10^{-2} \text{ h}^{-1} \).

In the following calculation, shorten the concentration of L-isoleucine to \([L]\) and of D-allo-isoleucine to \([D]\).

We can define a quantity \(de \) (diastereomeric excess):

\[
de = \frac{[L] - [D]}{[L] + [D]} \times 100(\%)
\]

2.5 Let us boil L-isoleucine for 1943 hours at 374 K. What is the value of \(de \) (with three significant figures) for L-isoleucine a) before boiling and b) after boiling?

L-isoleucine at 374 K for 1943 hours.

(a) Before boiling

Calculation:

\[
de = \text{ } \%
\]

(b) After boiling
b) After boiling
Calculation:

\[de = \% \]

2.6 How long does it take to convert 10% of L-isoleucine to D-\textit{allo}-isoleucine at 298 K?
كم يستغرق من الوقت تحويل 10% من L-isoleucine إلى D-\textit{allo}-isoleucine عند 298 K؟

Calculation:
In fact, the reverse reaction cannot be neglected. The correct kinetic scheme is expressed as

\[
\text{L-isoleucine} \xrightarrow{k_1} \text{D-allo-isoleucine} \xleftarrow{k_2}
\]

Let us define the deviation of concentration from its equilibrium value \([L]_{eq}\)

\[
x = [L] - [L]_{eq}
\]

It is possible to derive that \(x\) evolves with time according to the following equation:

\[
x = x(0) \times e^{-(k_1 + k_2)t}
\]

where \(x(0)\) is the deviation from equilibrium at \(t = 0\) h.

where \(x(0)\) is the deviation from equilibrium at \(t = 0\) h.

2.7 Let us boil 1.00 mol dm\(^{-3}\) L-isoleucine solution for 1943 hours at 374 K. The rate constant for the forward reaction is \(k_1(374 \text{ K}) = 9.02 \times 10^{-5} \text{ h}^{-1}\), \(K_{ep}\) for L-isoleucine epimerization has the value of 1.38 (at 374 K). In the following calculation, shorten the concentration of L-isoleucine to \([L]\) and of D-allo-isoleucine to \([D]\). Evaluate (with three significant figures) a) \([L]_{eq}\), b) diastereomeric excess (\(de\)) after boiling.

إذا غلينا محلول 1.00 mol dm\(^{-3}\) L-isoleucine لمدة 1943 ساعة عند درجة 374 K، وعلى فرض أن ثابت سرعة L-isoleucine لـ epimerization هو 9.02 \times 10^{-5} \text{ h}^{-1}\)،
ثابت التوزان لـ L-isoleucine هو 1.38 (عند 374 K). في الحسابات التالية، اختصر تركيز L-isoleucine بتسميتها \([L]\) وتركيز D-allo-isoleucine بتسميتها \([D]\). احسب (a) تركيز L-isoleucine بعد الغليان (b) diastereomeric excess \((de)\) و (c)

\([L]_{eq}\) (بعد الغليان، (أكتب النتيجة بـ 3 أرقام معنوية).
b) Calculation:

\[[L]_{eq} = \text{mol dm}^{-3} \]
Amino acids with a single chiral centre undergo racemization, e.g. L-arginine racemizes:

\[\text{L-arginine} \xrightarrow{k_1} \text{D-arginine} \]

The time evolution of concentrations is governed by

\[\ln \frac{1 + [D]}{[L]} = 2k_1 t + C \]

Here \([D]\) and \([L]\) are concentrations of D- and L-arginine at time \(t\), \(k_1\) is the rate constant, and the term \(C\) is set according to the initial concentrations.

Holy Roman Emperor Lothar III passed away during his journey to Sicily in 1137. To facilitate the repatriation of the remains, his body was immediately after his death boiled in water (373 K) for a certain time. Let us try to estimate the boiling time with the help of chemical kinetics. We know that the rate constant \(k_1\) of arginine racemization within the protein at 373 K and pH = 7 has the value of \(5.10 \times 10^{-3} \text{ h}^{-1}\).
2.8 How long was the Holy Roman Emperor Lothar III boiled in water in 1137?

Note: The racemization of arginine is an extremely slow process at temperatures typically encountered in graves. As both bodies are only some 880 years old, we can neglect the natural racemization during this time.

Колко време е бил вода Хръбър Lothar III в 1137?

Заметка: Рамасимата на аргинин е свръхнормално тежък процес при температури, каквито често се срещат в гробищата. За двата трупа, които са само 880 години стари, можем да изхвърлим естествената рамасима през този период.

Calculation:
Theoretical Problem 3

<table>
<thead>
<tr>
<th>Question</th>
<th>3.1</th>
<th>3.2</th>
<th>3.3</th>
<th>3.4</th>
<th>3.5</th>
<th>3.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>3.7</th>
<th>3.8</th>
<th>3.9</th>
<th>3.10</th>
<th>3.11</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>62</td>
</tr>
</tbody>
</table>

Problem 3. Emerging electro-mobility

Contemporary means of transportation rely on burning fossil fuels, although the efficiency of real combustion engines is inherently limited and typically ranges between 20 and 40%.

3.1 Mark the factors that can make the efficiency of a heat engine higher:

- ☐ Increasing the friction in the mechanical parts of the engine
- ☐ Increasing the burning temperature of the fuel in the engine
- ☐ Narrowing the working temperature interval of the engine
- ☐ Increasing the working pressure of the gas

Fuel cells represent a way to improve the engine efficiency for future vehicles. The engine efficiency can be improved by using hydrogen-based fuel cells.

3.2 The standard enthalpy of formation of liquid water is \(\Delta_f H^\circ(H_2O,l) = -285.84 \text{ kJ mol}^{-1} \), and the standard combustion enthalpy of isooctane is \(\Delta_c H^\circ(C_8H_{18},l) = -5065.08 \text{ kJ mol}^{-1} \) (both at 323.15 K). Calculate the values of specific (per unit of mass) combustion enthalpy of pure liquid isooctane and pure gaseous hydrogen.
If you know that the enthalpy of formation of liquid water

$\Delta_{f}H^\circ(H_2O,l) = -285.84 \text{ kJ mol}^{-1}$

and that the enthalpy of formation of octane

$\Delta_{f}H^\circ(C_8H_{18},l) = -5065.08 \text{ kJ mol}^{-1}$

at 298.15 K (1 mole of octane and 1 mole of liquid water), calculate the

3.3 Calculate the standard electromotive force (EMF) of a fuel cell using gaseous oxygen and hydrogen, both ideal gases at 100 kPa and 323.15 K, to produce liquid water. Use the following entropy data for 323.15 K:

$S^\circ(H_2O,l) = 70 \text{ J K}^{-1} \text{ mol}^{-1}$

$S^\circ(H_2,g) = 131 \text{ J K}^{-1} \text{ mol}^{-1}$

$S^\circ(O_2,g) = 205 \text{ J K}^{-1} \text{ mol}^{-1}$

Calculations:

$EMF = V$
3.4 Determine the ideal thermodynamic efficiency (η) of a fuel cell producing liquid water at 353.15 K. At this temperature, the enthalpy of formation of water is ΔfH\(^\circ\)(H\(_2\)O,l) = -281.64 kJ mol\(^{-1}\) and the corresponding reaction Gibbs energy change is ΔrG\(^\circ\) = -225.85 kJ mol\(^{-1}\).

\[\eta = \text{%} \]

3.5 A polymer membrane electrolyzer facility operates at the voltage of 2.00 V and is powered by a 10.0 MW wind turbine plant which was running at full power from 10 pm to 6 am. The electrolysis yielded 1090 kg of pure hydrogen. Calculate the electrolysis yield defined as the mass of produced hydrogen divided by its theoretical produced mass.

Calculations:

\[\eta_{\text{electrolysis}} = \text{%} \]

3.6 Calculate the mass of hydrogen required to drive the distance between Prague and Bratislava (330 km) at the average speed of 100 km h\(^{-1}\) with a car fitted with a 310 kW electric engine.
running on average at a 15% rate of its maximum power. Assume that the efficiency of the hydrogen cell producing electrical energy is 75%, the efficiency of the electric engine is 95%, and the Gibbs energy change for combustion of hydrogen fuel is \(\Delta_r G = -226 \text{ kJ mol}^{-1} \).

احسب كتلة الهيدروجين اللازمة لقيادة السيارة بين براغ وبراتيسلافا 330 km بسرعة وسطية قدرها 100 km h\(^{-1} \). سيربح مزودة بمحرك كهربائي استطاعته 310 kW يعمل بمعدل 15% من الحد الأقصى لقوته; افترض أن كفاءة خلية الهيدروجين التي تنطلق الطاقة الكهربائية تساوي 75% ؛ وكفاءة المحرك الكهربائي تساوي 95% وتغير طاقة جيبس لاحتراق وقود الهيدروجين هو 105

\[\Delta_r G = -226 \text{ kJ mol}^{-1} \]

Calculations:

\[m = \text{kg} \]

The low efficiency of hydrogen production and the safety issues connected with its storage impede spreading the hydrogen-based transportation technology. Hydrazine (N\(_2\)H\(_4\)) fuel cells might be a suitable alternative.

إن انخفاض كفاءة إنتاج الهيدروجين وقضايا السلامة المرتبطة بتخزينه تعيق انتشار تكنولوجيا النقل القائمة على الهيدروجين، وقد تكون خلايا وقود الهيدرازين (N\(_2\)H\(_4\)) بديلًا مناسباً.

The following standard reduction potentials for aqueous hydrazine systems are available:

فيما يلي كمونات الإرجاع القياسية التالية لمركبات الهيدرازين في الماء:
3.7 Fill in the following Latimer diagrams with the forms of hydrazine and ammonia prevailing at the given conditions and write the redox potential value for each arrow representing the electrochemical half-reaction. Record all the necessary calculations.

املأ مخططات لاتيمير التالية بأشكال الهيدرازين والأمونيا السائدة في الظروف المعطاة واكتب قيمة كمون الأكسدة والإرجاع على كل سهم يمثل نصف التفاعل الكهروكيميائي. اكتب كل الحسابات الضرورية.

<table>
<thead>
<tr>
<th>a) Acidic environment (pH = 0)</th>
<th>b) Basic environment (pH = 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculations:

Due to the toxicity, odour and its environmental impact, it is extremely unfavourable to produce ammonia in fuel cells.

بسبب السمية والرائحة والتأثير البيئي، فمن غير المفضل إطلاقًا إنتاج الأمونيا في خلايا الوقود.
3.8 Write down the net reaction for the decomposition of hydrazine under basic conditions to (i) ammonia and nitrogen and (ii) nitrogen and hydrogen and calculate the corresponding equilibrium constants at $T = 298.15 \text{ K}$.

اكتب معادلة تفاعل تحلل الهيدرازين في وسط قلوي إلى (i) الأمونيا والنيتروجين و (ii) النيتروجين والهيدروجين، واحسب ثوابت التوازن الموافقة عند $T = 298.15 \text{ K}$.

Equations for hydrazine decomposition:

<table>
<thead>
<tr>
<th>Equation</th>
<th>Arabic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{NH}_2\text{H}_2 \rightarrow \text{NH}_3 + \text{N}_2$</td>
<td>تحلل الهيدرازين إلى NH_3 و N_2 في وسط قاعدي:</td>
</tr>
<tr>
<td>$\text{NH}_2\text{H}_2 \rightarrow \text{H}_2 + \text{N}_2$</td>
<td>تحلل الهيدرازين إلى H_2 و N_2 في وسط قلوي:</td>
</tr>
</tbody>
</table>

Calculations:

Hydrazine decomposition to NH_3 and N_2 in a basic environment:

$K = \ldots$

Hydrazine decomposition to H_2 and N_2 in a basic environment:

$K = \ldots$

Rechargeable lithium-based batteries are an alternative to fuel cells. Lithium-ion batteries commonly use graphite for one of the electrodes, in which lithium clusters intercalate in between the graphite sheets. The other electrode is made of lithium cobalt oxide, which can reversibly absorb lithium ions moving from one electrode to the other during the charge and discharge processes. The half-reactions relevant for the system can be formally written as:
Using the formalism given above, write down the overall chemical reaction occurring in the battery during the **discharge** process. Give the oxidation states of the cobalt atom.

Additionally; write down the equations for the discharge and the charge processes.

3.10 Tick the boxes to get the correct statements which are valid for the **discharge** of the lithium-based battery described in 3.9:

- Li(C)_n electrode is **cathode** because lithium ions are reduced here.
- Li(C)_n electrode is **anode** because lithium atoms are oxidized here.
- LiCoO_2 electrode is **cathode** because cobalt ions are reduced here.
- LiCoO_2 electrode is **anode** because cobalt ions are oxidized here.

3.11 Assume that a C₆ unit, a CoO₂ unit and Li atom form the active battery mass required to transfer one electron between the electrodes. Using the corresponding standard EMF, calculate the theoretical specific reversible charge capacity (in mAh g⁻¹) and the energy density (in kWh kg⁻¹) of such a model lithium ion battery related to the whole active battery mass.

Theoretical calculations show that for a C₆ unit, a CoO₂ unit and Li atom forming the active battery mass, the theoretical specific reversible charge capacity is 171 mAh g⁻¹ and the energy density is 59 kWh kg⁻¹.
Calculations:

Charge capacity (\(c_{q,s}\)) = \(\text{mAh g}^{-1}\)

Energy density (\(\rho_{el}\)) = \(\text{kWh kg}^{-1}\)
Problem 4. Column chromatography of radioactive copper

المسألة الرابعة: الفصل بعمود الكروماتوغرافيا للنحاس المشع

^{64}Cu for positron emission tomodgraphy is prepared by the bombardment of a zinc target with deuterium nuclei (further referred to as the activated target).

يتم تحضير ^{64}Cu للتصوير البوزيتروني عن طريق قذف هدف من الزنك بنو الديتريوم (يشار إليه فيما بعد باسم الهدف المنشط).

4.1 Write down the balanced equation for the ^{64}Zn nucleus bombardment with deuterium nuclei, giving ^{64}Cu. Specify the corresponding atomic and mass numbers of all species. Disregard the charges.

اكتب المعادلة الموزونة لقذف نواة ^{64}Zn بنو الديتريوم للحصول على ^{64}Cu. حدد الأعداد الذرية والأعداد الكتلية لكل الجسيمات مع إهمال الشحنات.

\[\ldots \text{[}^{64}\text{Zn} \text{]} + \ldots \text{[}^{2}\text{H} \text{]} \rightarrow \ldots \text{[}^{64}\text{Cu} \text{]} + \ldots \text{[}^{2}\text{H} \text{]} \]

The activated target is dissolved in concentrated hydrochloric acid (HCl (aq)) to give a mixture containing Cu$^{2+}$ and Zn$^{2+}$ ions and their respective chlorido complexes.

يتم إذابة الهدف المنشط في حمض كلور الماء المركز (HCl (aq)) لإعطاء خليط يحتوي على كاتيونات Cu$^{2+}$ و Zn$^{2+}$ ومعقدات Cu$^{2+}$ و Zn$^{2+}$.

4.2 Calculate the mole fraction of negatively charged copper species with respect to the amount of copper prepared by zinc target activation. Assume $[\text{Cl}^{-}] = 4 \text{ mol dm}^{-3}$. For the overall complexation constants, β, see Table 1.

احسب الكسر المولي لجسيمات النحاس المشحونة سلباً وذلك نسبة إلى كمية النحاس المحضرة باستخدام الهدف المنشط للزنك.

افرض أن تركيز $[\text{Cl}^{-}] = 4 \text{ mol/L}$ ، للحصول على ثوابت تشكل المعقد الكلي β حسب الجدول 1.

Before you start the calculation, write down the charges in the upper right boxes:

قبل البدء في الحسابات، أكتب الشحنات في المربعات اليمنى:

Cu \[[\text{CuCl}] [\text{CuCl}_2] [\text{CuCl}_3] [\text{CuCl}_4] \]
Table 1. Overall complication constants β of Cu and Zn species (charges were omitted in the formulas).

$$\beta_i = \frac{[\text{CuCl}_i]}{[\text{Cu}] [\text{Cl}]^i}, \quad i \text{ in } [\text{CuCl}]$$

<table>
<thead>
<tr>
<th></th>
<th>β_1</th>
<th>β_2</th>
<th>β_3</th>
<th>β_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.36</td>
<td>1.49</td>
<td>0.690</td>
<td>0.055</td>
</tr>
</tbody>
</table>

Calculation:

Mole fraction $= \text{(answer with 2 digits after decimal point)}$ (الاجابة بعشرتين عشريتين)

The mixture containing Cu$^{2+}$ and Zn$^{2+}$ ions and their respective chlorido complexes was separated with an anion exchange resin. Dry resin in OH$^-$ form was dispersed in water and the suspension was transferred into a column. To occupy all sites with Cl$^-$ ions (i.e. to obtain resin in a Cl$^-$ form), the resin was washed with hydrochloric acid and then with deionized water to wash out all the unbound Cl$^-$ ions.
The mixture containing Cu^{2+} and Zn^{2+} ions and their respective chlorido complexes was transferred onto the resin-filled column. Hydrochloric acid solution was used as an eluent.

Using the simple experimental formula, you can calculate quantities that determine average elution properties of both copper species and zinc species on the column.

The retention volume \(V_R \) (the mobile phase volume at which 50% of the compound has been eluted from the column) can be calculated as follows:

\[
V_R = D_g \times m_{\text{resin,dry,OH form}} + V_0
\]

4.4 Using average mass distribution coefficients \(D_g \) (\(D_g(\text{Cu species}) = 17.4 \text{ cm}^3 \text{g}^{-1} \), \(D_g(\text{Zn species}) = 78.5 \text{ cm}^3 \text{g}^{-1} \)), calculate the retention volumes \(V_R \) in cm\(^3\) of both copper species and zinc species if the mass of dry resin in OH\(^-\) form \(m_{\text{resin,dry,OH form}} = 3.72 \) g and the void volume of a column \(V_0 = 4.93 \) cm\(^3\).

By using the eluent volume, you can calculate the retention volume \(V_R \) for each compound.

\[
D_g(\text{Zn species}) = 78.5 \text{ cm}^3 \text{g}^{-1} \quad \text{and} \quad D_g(\text{Cu species}) = 17.4 \text{ cm}^3 \text{g}^{-1}
\]

Using the eluent volume, you can calculate the retention volume \(V_R \) for each compound.
Calculation:

\[V_R(\text{Cu species}) = \text{cm}^3 \] (answer with 1 digit after the decimal point)

\[V_R(\text{Zn species}) = \text{cm}^3 \] (answer with 0 digit after the decimal point)

If you cannot find the answer, use \(V_R(\text{Cu species}) = 49.9 \text{ cm}^3 \) and \(V_R(\text{Zn species}) = 324 \text{ cm}^3 \) for further calculations.

Using the simple experimental formula, separation of two sets of species, A and B, can be considered complete if

\[V_{0.001}(A) - V_{0.999}(B) > 10V_c \]

where \(V_{0.001} \) is the mobile phase volume at which 0.1% of A has been eluted from the column, and \(V_{0.999} \) is the mobile phase volume at which 99.9% of B has been eluted from the column.

Based on a calculation, decide whether copper species were separated completely from zinc species. The volume of the column filled with the swollen resin \(V_c = 10.21 \text{ cm}^3 \), the resin particle diameter \(d_p = 0.125 \text{ mm} \), and the height of the wet resin in a swollen state in the column \(L_c = 13.0 \text{ cm} \).
Calculate the If you cannot find the answer, use $Q_{m,\text{theor}} = 4.83 \text{ mmol g}^{-1}$ for further calculations.

In reality, not all tetraalkylammonium groups are involved in the ion exchange. To determine the total ion exchange volume capacity, Q_v, the column filled with 3.72 g dry resin converted to the Cl$^-$ form was washed with the excess of sodium sulfate solution. The effluent was collected in a 500 cm3
volumetric flask, which was then filled with water to the mark. An aliquot of 100 cm3 was potentiometrically titrated with 0.1027 mol dm$^{-3}$ silver nitrate. The silver nitrate solution volume at the equivalence point was 22.20 cm3. The volume of the column filled with the swollen resin, V_c, was 10.21 cm3.

4.7 Calculate the Q_v of the swollen resin in mmol of active tetraalkylammonium groups per cm3 of the swollen resin.

$$Q_v = \text{mmol cm}^{-3} \text{(answer with 2 digits after decimal point)}$$

If you cannot find the answer, use $Q_v = 1.00 \text{ mmol cm}^{-3}$ for further calculations.

4.8 Calculate the mole fraction (x) of the tetraalkylammonium groups actively involved in the ion exchange.

$$x = \text{(answer with 3 digits after decimal point)}$$

(الإجابة بثلاث خانات عشرية)
Problem 5. Bohemian granet

Bohemian garnet (pyrope) is a famous Czech blood coloured semi-precious stone. The chemical composition of natural garnets is expressed by the general stoichiometric formula of $A_3B_2(SiO_4)_3$, where A^{II} is a divalent cation and B^{III} is a trivalent cation. Garnets have a cubic unit cell that contains 8 formula units. The structure comprises 3 types of polyhedra: the A^{II} cation occupies a dodecahedral position (it is surrounded with eight O atoms), the B^{III} cation occupies an octahedral position (it is surrounded with six O atoms) and Si^{IV} is surrounded with four O atoms arranged into a tetrahedron.

The most common garnet mineral is almandine with the formula of $Fe_3Al_2(SiO_4)_3$. Its unit cell parameter is $a = 11.50$ Å.

5.1 Calculate the theoretical density of almandine.

$$\rho = \frac{M}{V} \text{ g cm}^{-3}$$
The Bohemian garnet has the composition of \(\text{Mg}_3\text{Al}_2(\text{SiO}_4)_3 \). Pure compound is colourless and the colour of natural garnets comes from chromophores – transition metal cations that substitute the host material cations. The red colour of the Bohemian garnet comes from trace amounts of \(\text{Cr}^{III} \) ions in the octahedral sites and \(\text{Fe}^{II} \) ions in the dodecahedral sites.

5.2 Draw the splitting diagram for the \(\text{[Cr}^{III}\text{O}_6]^{\text{oct}} \) d-orbitals and fill it with electrons.

5.3 Identify the 1st transition row element(s) whose trivalent cation(s) \(\text{M}^{III} \) placed in an octahedral position is/are diamagnetic in the low-spin arrangement and paramagnetic in the high-spin arrangement.

5.4 The figure below shows d-orbitals splitting in the dodecahedral crystal field. Fill in the electrons for the \(\text{[Fe}^{II}\text{O}_8]^{\text{dod}} \) chromophore for both existing arrangements.

<table>
<thead>
<tr>
<th>a) high-spin arrangement</th>
<th>b) low-spin arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>توزيع مرتفع الغزل</td>
<td>توزيع منخفض الغزل</td>
</tr>
</tbody>
</table>
5.5 Derive the inequalities (e.g. $P < E_1 + E_2 + E_3$) for the pairing energy (P) magnitude in relation to energies E_1, E_2 and E_3 for both arrangements.

استنتج علاقات عدم المساواة (المتراجحات) ($P < E_1 + E_2 + E_3$) لقيمة لطاقة التزاوج (P) مقارنة بالطاقة E_1, E_2, E_3 لكل التوزيعين.

<table>
<thead>
<tr>
<th>a) high-spin arrangement:</th>
</tr>
</thead>
<tbody>
<tr>
<td>توزيع مرتفع الغزل</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b) low-spin arrangement:</th>
</tr>
</thead>
<tbody>
<tr>
<td>توزيع منخفض الغزل</td>
</tr>
</tbody>
</table>

5.6 Assuming that $P > E_3$, identify the 1st transition row element(s) whose divalent cation M^{II} placed in dodecahedral position is diamagnetic in the low-spin arrangement and paramagnetic in the high-spin arrangement.

بفرض أن $P > E_3$، حدِّد العنصر (العناصر) من الصف الانتقالي الأول M^{II} الذي يتوضع كاتيونه الثنائي التكافؤ في أركان الأثني عشر ويجها والتي يكون دايامغناطيسي في التوزيع ذو الغزل المنخفض وبارامغناطيسي في التوزيع ذو الغزل المرتفع.

The figures below show simplified absorption spectra of four coloured minerals – blood-coloured Bohemian garnet, green uvarovite, blue sapphire and yellow-orange citrine.

تظهر الأشكال أدناه أطياف امتصاص مبسطة لأربع معادن ملونة – العقيق البوهيمي ذو اللون الدموي، العقيق الأخضر، الياقوت اللازرق، والسترين الأصفر البرتقالي.
5.7 Match the spectra with the minerals.

<table>
<thead>
<tr>
<th>Bohemian garnet:</th>
<th>Sapphire:</th>
</tr>
</thead>
<tbody>
<tr>
<td>العقيق البوهيمي</td>
<td>الياقوت الازرق</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uvarovite:</th>
<th>Citrine:</th>
</tr>
</thead>
<tbody>
<tr>
<td>العقيق الاخضر</td>
<td>السترين</td>
</tr>
</tbody>
</table>

5.8 If illuminated with monochromatic blue-green (blue-green) light, how will the Bohemian garnet look?

إذا تم إمضاء ضوء أحادي اللون أزرق-أخضر (ازرق-أخضر)، كيف سيبدو العقيق البوهيمي؟

- Red احمر
- Blue ازرق
- Yellow-orange اصفر برتقالي
- Black أسود
- Yellow اصفر
- Blue-green أزرق-اخضر
- Violet بنفسجي
- White أبيض

Andradite is another garnet mineral; its chemical composition is Ca$_3$Fe$_2$(SiO$_4$)$_3$. A double cation substitution – TiIV for FeIII in the octahedral position and FeIII for SiIV in the tetrahedral position – gives rise to black schorlomite. Its chemical composition can be expressed as Ca$_3$[Fe,Ti]III,IVO$_4$.
The colour of the mineral is caused by two chromophores: \([\text{Fe}^{\text{III}}\text{O}_8]^{\text{oct}}\) and \([\text{Fe}^{\text{III}}\text{O}_4]^{\text{tet}}\). The central ions of both chromophores have equal number of unpaired electrons.

\[\text{Fe}^{\text{III}}\text{O}_8^{\text{oct}}\quad \text{and} \quad \text{Fe}^{\text{III}}\text{O}_4^{\text{tet}}\]

The central ions of both chromophores have equal number of unpaired electrons.

5.9 Calculate the percentage of Si\(^{\text{IV}}\) ions in a sample of schorlomite that must be substituted with Fe\(^{\text{III}}\), if we know that 5% of Fe\(^{\text{III}}\) ions in octahedral position are substituted with Ti\(^{\text{IV}}\).

\[p = \text{\%}\]

5.10 Draw the d-orbitals splitting diagrams for both chromophores and fill in the electrons.

\[[\text{Fe}^{\text{III}}\text{O}_8]^{\text{oct}}: \quad [\text{Fe}^{\text{III}}\text{O}_4]^{\text{tet}}:\]

Tetrahedral field causes a smaller splitting than the octahedral field (\(\Delta_{\text{tet}} = \frac{4}{9} \Delta_{\text{oct}}\)). Surprisingly for the Fe\(^{\text{III}}\) ion, the energy of the first d–d transition (although very weak) for the octahedral chromophore is smaller (11000 cm\(^{-1}\)) than for the tetrahedral one (22000 cm\(^{-1}\)).

The energy of the first d–d transition (although very weak) for the octahedral chromophore is smaller (11000 cm\(^{-1}\)) than for the tetrahedral one (22000 cm\(^{-1}\)).

5.11 Calculate the size of pairing energy \((P)\) and the sizes of \(\Delta_{\text{oct}}\) and \(\Delta_{\text{tet}}\) splitting. Assume that the pairing energy is equal in both chromophores.

\[\text{حاسب قيمة طاقة التزاوج (P) وقيم الانقسامات} \quad \Delta_{\text{oct}} \quad \text{و} \quad \Delta_{\text{tet}}\]
Synthetic garnet YAG

Yttrium Aluminium Garnet (YAG), used in optoelectronics, has the composition of $Y_3Al_5O_{12}$. Its structure is derived from the general garnet structure $A_3B_2(SiO_4)_3$ by placing the ions Y^{III} and Al^{III} to the A, B and Si positions.

Question 5.12

Based on your knowledge of the relative ion radii, determine which cation occupies which position.

<table>
<thead>
<tr>
<th>A:</th>
<th>B:</th>
<th>Si:</th>
</tr>
</thead>
</table>

Question 5.13

For the use in LED technology, YAG is doped with Ce^{III}. Determine the values of x and y in the formula of YAG in which 5% of yttrium atoms are substituted with cerium.

From the substitution of 5% of yttrium atoms in YAG, it is found that Ce^{III} is added in the composition x and y in the formula $Y_xCe_yAl_5O_{12}$. The values of x and y are determined.
If you don't get result, use \(x = 2.25, y = 0.75 \)

\[x = 2.25, \quad y = 0.75 \]

5.14 The CeIII-doped YAG is prepared by annealing the mixture of Y\textsubscript{2}O\textsubscript{3}, Al\textsubscript{2}O\textsubscript{3} and CeO\textsubscript{2} in H\textsubscript{2} atmosphere. Use the formula from 5.13, write down a balanced equation for this reaction with the smallest whole-number stoichiometric coefficients.

Doping the YAG structure with rare-earths ions enables the production of lasers with emission wavelengths ranging from the UV to the mid-IR region. In the scheme below, simplified f–f energy transitions of selected rare-earths ions are shown.
5.15 Which cation has a transition which corresponds to blue light emission.

أي كاتيون لديه الانتقال الذي يتوافق مع انبعاث الضوء الأزرق.

- Er^{3+}
- Sm^{3+}
- Tm^{3+}
- Pr^{3+}
- Yb^{3+}
- Nd^{3+}
- Tb^{3+}

5.16 Calculate the emission wavelength of this light.

احسب طول موجة الانبعاث أو الإصدار الخاص بهذا الضوء

\[\lambda = \text{nm} \]

5.17 According to a legend, Noah used a stick with a garnet stone for illumination during his voyage. Assuming only the photoluminescence effect, determine the colour of the laser light emitted from his stick if the stone were the blood-coloured Bohemian garnet.

وفقا لأسطورة؛ استخدم نوح عصا من حجر العقيق للإضاءة أثناء رحلته؛ وافترض التأثير الضوئي فقط، حدد لون ضوء الليزر المنبعث من عصاه إذا كان الحجر هو العقيق البوهيمي ذو لون الدم.

- Red
- Blue
- Yellow-orange
- Black
- Yellow
- Blue-green
- Violet
- White
Theoretical

<table>
<thead>
<tr>
<th>Problem 6</th>
<th>Question</th>
<th>6.1</th>
<th>6.2</th>
<th>6.3</th>
<th>6.4</th>
<th>6.5</th>
<th>6.6</th>
<th>6.7</th>
<th>6.8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td></td>
<td>18</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>16</td>
<td>3</td>
<td>68</td>
</tr>
<tr>
<td>Score</td>
<td></td>
</tr>
</tbody>
</table>

7% of the total

Problem 6. Let's go mushrooming

Mushrooming belongs to Czech and Slovak traditional pastimes. While some of our mushroom species are edible, some are inedible or even poisonous.

Inky cap (Coprinopsis atramentaria) is considered edible and delicious. It contains a natural compound called coprine (E), which can be easily synthesized from ethyl 3-chloropropanoate (1).

total 6

6.1 Draw the formulae of compounds A–E including stereochemistry when necessary. *Hint: The first reaction affording compound A proceeds via an organometallic compound which then cyclizes.*

ارسم المركبات من A إلى E بالشكل الفراغي عما يكون ذلك ضروريًّا. ملاحظة: يحدث التفاعل الأول الذي ينتج المركب A عبر مركب عضوي معين ثم يحدث عملية تحلق له.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>
In the human body, coprine undergoes hydrolysis to L-glutamic acid (3) and compounds C and 4, which are responsible for the coprine adverse side-effects. They inhibit the enzyme acetaldehyde dehydrogenase, which is involved in the metabolism of alcohol. When the enzyme is inhibited, acetaldehyde formed by alcohol dehydrogenase accumulates in the body, causing strong symptoms of hangover (so called antabuse effect). The active site of the enzyme contains a cysteine SH group, which is blocked either by compound C or 4.

Enzyme = acetaldehyde dehydrogenase

6.2 Using the pictogram for acetaldehyde dehydrogenase above, draw the structure F of the enzyme inhibited by compound 4.
The antabuse effect got its name after antabuse (5), the most known drug used in alcohol-addiction treatment. This drug can be synthesized according to the following scheme.

6.3 Draw the formulae of compounds G and H. *Hint: Compound H contains five carbon atoms.*

6.4 Mark all possible reagents which could be used for I from the following list.

این تأثیر antabuse به‌دست آمده‌است پس از antabuse (5)، دارویی بیشتری که در درمان ایجاد ادمان به‌دست آمده است. این دارو می‌تواند بر اساس نمودار زیر به‌سازی شود:

6.3 ارسم دو ترکیب G و H. *شیوه: ترکیب H می‌تواند پنج ذرات کربن در خود داشته باشد.*

6.4 انتخاب کلیه کانستانتها که می‌توانند برای I استفاده شوند از لیست زیر.

The way antabuse inhibits acetaldehyde dehydrogenase is similar to the effect of compounds C and 4.

The way antabuse inhibits acetaldehyde dehydrogenase is similar to the effect of compounds C and 4.

\[\text{Enzyme} = \text{acetaldehyde dehydrogenase} \]

Using the pictogram for acetaldehyde dehydrogenase above, draw the structure J of the enzyme inhibited by antabuse (5). Hint: Three sulfur atoms should be in the structure.

False morel (\textit{Gyromitra esculenta}) is another interesting mushroom. Although it was considered edible in the past (\textit{esculentus} means edible in Latin), there is clear evidence that this mushroom is poisonous due to the content of gyromitrin (M). This natural compound can be prepared from \(N \)-methylhydrazine (6):
6.6 Draw the formulae of compounds K–M.

In human body, gyromitrin (M) hydrolyzes and provides N-methylhydrazine (6), which is strongly hepatotoxic. Gyromitrin (M) hydrolysis occurs as soon as it enters the acidic environment in human stomach where both its amide and imine groups are hydrolyzed.

Let us focus on the hydrolysis of the amide moiety within the gyromitrin molecule. The vibrational wavenumber of the stretching mode of the relevant C−N bond amounts to 1293.0 cm⁻¹ and the potential energy surface does not significantly alter its shape with isotope substitution effect.

Calculate the highest possible hypothetical kinetic isotope effect at the temperature of human body, 37 °C, for the given hydrolysis reaction assuming that both relevant nitrogen and carbon atoms were simultaneously substituted, ¹⁴N with the ¹⁵N isotope and ¹²C with the ¹³C isotope. Consider that only the zero point vibrational energy affects the rate constants. Assume that the molar masses of all isotopes are integers. In all further steps consider five significant digits.

6.7 Calculate the highest possible hypothetical kinetic isotope effect at the temperature of human body, 37 °C, for the given hydrolysis reaction assuming that both relevant nitrogen and carbon atoms were simultaneously substituted, ¹⁴N with the ¹⁵N isotope and ¹²C with the ¹³C isotope. Consider that only the zero point vibrational energy affects the rate constants. Assume that the molar masses of all isotopes are integers. In all further steps consider five significant digits.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In human body, gyromitrin (M) hydrolyzes and provides N-methylhydrazine (6), which is strongly hepatotoxic. Gyromitrin (M) hydrolysis occurs as soon as it enters the acidic environment in human stomach where both its amide and imine groups are hydrolyzed.
6.8 After making these isotopic changes, the rates of hydrolysis are not significantly different. Which of the following is the most likely the rate determining step?

- Nucleophilic attack of water on a protonated amidic moiety
- C–N bond cleavage
- Protonation of the gyromitrin molecule
Problem 7. Cidofovir

Cidofovir (1), originally designed and prepared by the group of Professor Holy in former Czechoslovakia, is a nucleotide analogue with antiviral activity. It is used to treat viral infections, mostly in patients with AIDS.

The key intermediate in the synthesis of cidofovir is optically pure diol 2, which can be prepared from L-mannitol (3).

The theoretical problem 7 is as follows:

<table>
<thead>
<tr>
<th>Theoretical Problem 7</th>
<th>Question</th>
<th>7.1</th>
<th>7.2</th>
<th>7.3</th>
<th>7.4</th>
<th>7.5</th>
<th>7.6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td></td>
<td>10</td>
<td>6</td>
<td>15</td>
<td>9</td>
<td>11</td>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7% of the total score

Cidofovir (1)

C

O

H

P(OH)₂

O

OH

Cidofovir (1)

The key intermediate in the synthesis of cidofovir is optically pure diol 2, which can be prepared from L-mannitol (3).

Cidofovir (1)

C

O

H

P(OH)₂

O

OH

Cidofovir (1)
7.1 Draw the structures of compounds A–D, including stereochemistry. One molecule of A produces two molecules of B.

أرسم بنى المركبات A–D بالشكل الفراغي حيث جزيء واحد من المركب A يعطي جزيئين من المركب B.
7.2 Draw the structural formulae of all alternative stereoisomers of compound 3 which could be used in the same reaction sequence to afford only the same product 2.

أرسم الصيغ البنوية لجميع المركبات الفراغية الممكنة للمركب (3) والتي يمكن أن تستخدم في التفاعلات اللاحقة للحصول على المركب (2).

Diol 2 is further modified to provide compound I. The synthesis of phosphonate 4 used to convert compound F to G will be discussed later.

يحصل عملية تحديل لاحقة للحصول على المركب 1. استعمل مركب phosphonate 4 لتحويل المركب F إلى G والذي سيتم مناقشته لاحقاً.
7.3 Draw the structures of compounds E–I, including stereochemistry. Use the abbreviation MMT for the (4-methoxyphenyl)diphenylmethyl group.

(4-methoxyphenyl)diphenylmethyl

The same scheme as on the previous page, for easier orientation

\[
\begin{align*}
E & \quad C_{30}H_{30}O_4 \\
F & \\
G & \\
H & \\
I & C_{16}H_{27}O_8PS
\end{align*}
\]
Phosphonate 4 can be prepared according to the following scheme:

\[
\begin{align*}
| & \text{O} & \text{Br} & + & \text{J} & \rightarrow & \text{K} & \longrightarrow & \text{L} & \longrightarrow & \text{4} \\
\text{O} & \text{O} & \text{J} & & & & 1. \text{EtONa} & 2. \text{H}^+ & & & \\
\end{align*}
\]

The reaction of I (from question 7.3) with cytosine (5) leads to a 3:1 mixture of isomeric compounds M and N. The formation of these two products may be understood by realizing that cytosine (5) can also exist as an aromatic tautomer P. The reaction of M with cyclohexa-1,4-diene and palladium
hydroxide on carbon leads to compound O. The phosphonic ester moiety in compound O reacts with bromotrimethylsilane to provide cidofovir (1).
7.6 Draw the structures of the two simple organic side products Q and R formed during the conversion of M to O.

O

from cyclohexadiene

M

Q

R

from the protecting group
Problem 8. Caryophyllene

β-Caryophyllene (3) is a naturally occurring sesquiterpene present in clove tree and in some traditional Czech and Slovak plants, such as the hop plant or small-leaved linden.

The synthesis of β-caryophyllene starts from a single enantiomer of dienone A. The reaction of A with silyl ketene acetal 1 followed by immediate reduction and aqueous work-up affords ketone 2. This intermediate then undergoes reaction with tosyl chloride, providing B. Basic cyclization of this compound affords C. Finally, the reaction of C with ylide D provides β-caryophyllene.

![β-Caryophyllene (3)](image-url)
8.1 Draw the structures of compounds A–D, including the appropriate stereochemistry. *Hint: In transformation A → 2, the silyl ketene acetal acts as a nucleophile.*

ارسم الصيغ البنوية للمركبات A–D، بما في ذلك الشكل الفراغي المناسب. ملاحظة: عند الانتقال من A → 2، يعمل silyl ketene acetal كنوكليوفر.
One of the double bonds in 2 as well as in 3 has *trans* configuration and the scaffold is stable enough due to the large ring size. *trans*-Cyclooctene (4) is the smallest ring that can accommodate a *trans* double bond. It can be prepared according to the following scheme:

![Chemical structure and reaction scheme]

8.2 Draw the structure of reagent E and intermediates F and G, including the appropriate stereochemistry. For F and G, tick the box indicating the stereochemical outcome.

<table>
<thead>
<tr>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>achiral</td>
<td>single enantiomer</td>
</tr>
<tr>
<td>single enantiomer</td>
<td>racemic mixture</td>
</tr>
<tr>
<td>racemic mixture</td>
<td>mixture of diastereoisomers</td>
</tr>
</tbody>
</table>
8.3 Draw the structure of the enantiomer of cycloalkene 4.

\[
4
\]

The two double bonds in β-caryophyllene display different reactivity: the double bond in the ring (endocyclic) is more reactive than the other one (exocyclic) due to the ring strain.

الرابطتان الثنائية في β-caryophyllene لها فعالية مختلفة: الرابطة الثنائية في الحلقة (endocyclic) أكثر فعالية من الأ الأخرى خارج الحلقة (exocyclic) بسبب الإجهاد على الحلقة.
8.4 Draw the structures of compounds $\text{Ha} + \text{Hb}$, I and $\text{Ja} + \text{Jb}$, including the appropriate stereochemistry. *Hint: Ha + Hb and Ja + Jb are pairs of diastereomers.*
Interestingly, the reactivity of the double bonds is reversed when isocaryophyllene (5) is used instead of β-caryophyllene (3).

\[\text{β-caryophyllene (3)} \]

8.5 Draw the structures of compounds Ka and Kb. *Hint: Ka + Kb are a pair of diastereomers.*

\[\text{Ka} + \text{Kb} \]
Isotope-labelled compounds are invaluable tools for reaction mechanism investigation, structure determination, and mass or NMR spectroscopy studies. Let us have a look at the synthesis of some labelled analogues of β-caryophyllene.

المركبات موسومة بالنظائر هي أدوات لا تقدر بثمن للتحقق من آلية التفاعل، وتحديد الصيغة البنوية، ومطيفية الكتلة والرنين المغناطيسي النووي. دعنا ننظر لاصطناع بعض النظائر الموسومة لـ β-caryophyllene.

β-Caryophyllene (3) undergoes acid-catalyzed cyclization, which leads to a complex mixture of products. Among them, the pair of diastereomers Na + Nb and the pair of diastereomers 7a + 7b are the most abundant. The reaction starts with protonation of the more reactive internal double bond affording cation O. This cyclizes without the cleavage of a carbon-carbon single bond to yield diastereomeric tricyclic cations Pa and Pb, which undergo hydration to give the target alcohols Na and Nb. Alternatively, the cations Pa and Pb rearrange with the cleavage of a carbon-carbon single bond to cations Qa and Qb, which deprotonate to compounds 7a and 7b.

8.6 Draw the structures of compounds L and M including the appropriate stereochemistry.

اكتب صيغ بنى المركبين M و L مع مراعاة الكيمياء الفراغية لهما (الصيغ الفراغية).
8.7 Draw the structures of the three intermediates O, Pa, Qa leading to the diastereomer 7a including the appropriate stereochemistry.

أرسم الصيغ البنوية للمركبات الوسطية (غير ضوئي) 7a والتي تؤدي إلى المتماكب الدياستيري (غير ضوئي) 7a. مع مراعاة الصيغ الفراغية لهذه المركبات.
8.8 Draw the structures of diastereomers $\text{Na} + \text{Nb}$.

| $\text{Na} + \text{Nb}$ | $\text{C}_{15}\text{H}_{26}\text{O}$ |